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Spherical harmonic decomposition applied to spatial-temporal analysis
of human high-density electroencephalogram
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We demonstrate an application of spherical harmonic decomposition to the analysis of the human electro-
encephalogram~EEG!. We implement two methods and discuss issues specific to the analysis of hemispheri-
cal, irregularly sampled data. Spatial sampling requirements and performance of the methods are quantified
using simulated data. The analysis is applied to experimental EEG data, confirming earlier reports of an
approximate frequency–wave-number relationship in some bands.
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I. INTRODUCTION
The human electroencephalogram~EEG!, as measured a

the scalp, represents a superposition of electric fields re
ing from post-synaptic potentials in neocortex, the thin~2 to
5 mm! surface layer of human brains. Several models
neocortical dynamics treat EEG as a mixed global/local p
nomenon@1–3#, and a better understanding of its spati
temporal dynamics is necessary for evaluation and refi
ment of these models. Its temporal behavior has been stu
at length, both by clinical observation@4# and with such tools
as power spectra@5#, coherence@6#, the Hilbert transform
@7#, and many others. However, until recently poor spa
resolution~due to minimal electrode sampling and under u
of head models! has limited spatial analysis of EEG@1,2,8#.

As a potential field on a near-hemispherical surface, E
is amenable to analysis by spherical harmonic decomp
tion. In this paper, we apply two methods of decomposit
~one described by Caduschet al. @9# and one adapted from
Misner @10#! to 131-channel EEG data. Using simulat
data, we discuss issues and pitfalls relevant to such an an
sis, specifically the effect of integration over a hemisphe
limited sampling density, and deviations from a spheri
surface. The adapted Misner decomposition~described fully
in the Appendix! is applied to experimental data. From th
application, we draw preliminary conclusions regarding
frequency–wave-number relation of neocortical activity.

II. CONSIDERATIONS FOR DECOMPOSITION OF EEG

We use the real spherical harmonics@11#, defined on the
sphereV and described by the orthogonality integral

^YlmuYl 8m8&5E
0

2pE
0

p

Ylm~u,f!Yl 8m8~u,f!sinududf

5d l ,l 8dm,m8 . ~1!
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In theory, a potential fieldF(V) may be decomposed int
spherical harmonic amplitudesF lm defined by

F lm5E
V

Ylm~u,f!F~u,f!d2V. ~2!

In practice, whereF(V) is sampled at discrete locationsG,
we would prefer to accomplish the decomposition in t
form

F̂ lm5 (
xPG

m lm~x!F~x!, ~3!

where theF̂ lm are estimates ofF lm , which may be imple-
mented in a single matrix multiplication if them lm(x) are
constant for a given sampling gridG. The transition from
theory to practice, however, may be complex. In the case
EEG or similar data, we encounter three major and two
nor issues.

A. Discretization and regularization

First, with discretely sampled dataF(G), Eqs. ~1! and
~2!—both defined over a continuous medium—must be u
with care. Even with appropriate sampling densities~see
Sampling, below!, discretization of the inner product of Eq
~1! invalidates the orthogonality relation. Note that the fu
damental ability of orthogonal functions to represe
sampled signals is not compromised. Rather, the decomp
tion becomes more difficult as a given signal may be
proximately reconstructed with more than onel ,m spectrum.
Blind application of a discretized Eq.~2! may yield an accu-
rate reconstruction at the sample points, but with large a
facts in the higher spatial frequencies. The apparently ac
rate reconstruction will often be due to an unrealis
superposition of high-amplitude, high-frequency modes.

We must invoke constraint or regularization techniques
address this issue. Recently, Misner@10# introduced a regu-
©2001 The American Physical Society16-1
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larization method for decomposition on a rectangular thr
dimensional grid; that is, generalized to useYnlm(r ,u,f).
We describe here the special case of sampling on a sphe
surface, more relevant to EEG analysis, in whichr is con-
stant. In Misner’s method, a matrixGAB represents the dis
cretized inner product

GAB5^YAuYB&5 (
xPG

YA~x!YB~x!wx , ~4!

whereA andB refer to index groups (lm). ~For application
to EEG, we use the real harmonics and replace Misn
weight functionwx with the effective area of each electrode!
Misner demonstrates that the mean square error due to
cretization is minimized~the regularization constraint! by
choosing

m lm~x!5Ylm~u,f!wx , ~5!

for xPG, where the ‘‘adjoint spherical harmonics’’YB are
defined as

YB5(
A

YA~GAB!21. ~6!

The coefficientsm lm remain constant for a given samplin
grid, and may be used in Eq.~3! to estimateF lm .

In a separate analysis, Caduschet al. @9# approached the
problem as a side issue of spherical spline interpolation
the EEG. Adapted to the notation used here, the second-o
spline fit F8 over the sphereV is given by

F8~V!5d1(
l 51

`

(
m52 l

l F l

@ l ~ l 11!#2 (
xPG

cxYlm~x!GYlm~V!,

~7!

where thecx and d are coefficients calculated from th
sampled potentials. Equation~7! is equivalent to a spherica
harmonic expansion ofF8, in terms of coefficientsF lm in-
dicated by the bracketed term. Regularization is acco
plished in this case by the spline fit, which is constrained
produce the smoothest approximation consistent with
sampled data. The spherical harmonic expansion coeffici
F lm8 , then, are given by

F lm8 5H d, l 50;

1

@ l ~ l 11!#2 (
xPG

cxYlm~x!, l>1.
~8!

Using Caduschet al.’s derivation of spline coefficientscx
and d, a constant matrix ofm lm may be derived for each
sampling grid, and used in Eq.~3! as discussed previously
Further detail on the spline fit may be found in the Ref.@9#.

B. Hemispherical sampling

Particularly relevant to EEG analysis is the ambiguity
troduced by sampling over only half of the sphere. For
stance, the functionY10 is indistinguishable over the uppe
05191
-

cal

’s

is-

f
er

-
o
e
ts

-
-

hemisphere from a sum ofY00 and several higher harmonics
In other words, the spherical harmonicsYlm are no longer
orthonormal for 0<u<p/2; this may be expressed by re
placing thed in Eq. ~1! with an error quantitye

^YAuYB&5E
0

2pE
0

p/2

YA~u,f!YB~u,f!sinududf5eAB .

~9!

In general, our hemispherical estimatesF̂A8 will be related to
the hypothetical full-sphere result by the matrix ofeAB’s

F̂85eF̂. ~10!

It is impossible to calculate a more accurate result, by inv
sion of e, for two reasons. First, the matrixe is ill condi-
tioned (R.108, where the two-norm condition numberR is
the ratio of the largest singular value ofe to the smallest! and
thus, the inversion is problematic. More fundamentally, sin
the spherical harmonics are not truly orthogonal over
hemisphere, the matrixe expresses an unavoidable ambig
ity between certainYlm .

Given this ambiguity, we must consider whether t
spherical harmonics are the most appropriate set of b
functions for decomposition over the hemisphere. In the fi
of computer graphics, a hemispherical mapping of
Zernike polynomials~orthonormal over the unit disk! was
proposed by Koenderinket al. @12# to represent the varianc
of reflectance over the hemisphere. However, the Zern
based method provides no such convenient measure of
tial spectrum, independent of coordinate orientation, as
given by the collapsed-m angular power spectrum estima
described in Sec. II D.

Furthermore, we note that the underlying biological sy
tem ~the human cortex! is not limited to the single hemi-
sphere accessible to scalp electrodes. For this reason, theYlm
may provide a better connection to brain anatomy a
global-dynamic theory. For instance, the global alpha rhyt
postulated in@1# and @2# would be a fundamental-mode os
cillation over the entire cortex, analogous to theY10 har-
monic. Thus, the spherical harmonics seem appropriate
EEG analysis, when used with an understanding of the he
spherical error.

C. Sampling

Of course, when attempting to decompose experime
data, we must sampleF(V) at specific locationsG. Assum-
ing near-regularly spaced electrodes, our maximum res
able l is determined by a spherical analog of the famil
time-domain Nyquist limit@13# f max51/(2DT), where the
maximum resolvable frequencyf max is determined by the
sampling intervalDT. For spatial sampling on a spheric
surface, we replaceDT with the analogous quantityg, rep-
resenting mean angular distance between adjacent electr
Since thel index indicates cycles per circumference~as well
as the number of nodal lines across the sphere!, we multiply
by 2p to give a limit of l max5p/g. In practice, sampling will
degrade for frequency components under but near the
6-2
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FIG. 1. Correlations between actual and estimatedl power for uniformly distributed random spectra. Five hundred potential maps w
generated from known wave-number spectra, with random power in eachl component, uniformly distributed between 0 and 1. For each
seven electrode densities, wave number spectra were estimated by spherical harmonic decomposition of the 500 sampled maps. C
between actual power and estimated power were calculated over the 500 trials for eachl component. Shown here for~a! adjoint harmonic
and ~b! spline methods, these correlations are a measure of the quality of a single decomposed power spectrum.
t a

p.

e

io

A
i-
a-
th
u

o

-
h

h
ob
i-

a

rode
to

ach
mly

.
r
on’s

in
-

on-

al

en

rode
red

-

-
our
quist limit, so a practical limit off max51/(3DT) or f max
51/(4DT) is generally chosen. Likewise, here we adop
conservative limit of

l max5F p

2gG , ~11!

or l max56 usingg50.24 for our 131-channel electrode ca
Note that the usual step of analog prefiltering~to avoid alias-
ing of higher frequencies! is not required here due to th
low-pass characteristics of the head volume conductor@14#.

D. Coordinate orientation

In many problems, the sphere has no preferred direct
The m indices are usually collapsed@15# to produce an an-
gular power spectrum estimateĜ( l ) as a function of wave
number only

Ĝ~ l !5 (
m52 l

l

~F̂ lm8 !2, ~12!

which is independent of coordinate system orientation.
well, in the simulations of Sec. III, we found the ‘‘hem
spherical error’’ inl spectrum to be independent of orient
tion. In some EEG studies, of course, the orientation of
underlying cerebral hemispheres may be relevant. In s
cases, local spatial Fourier analysis@1# should adequately
complement our decomposition without the complication
distinguishingm modes.

E. Nonspherical media

We assume that our mediumV is a sphere, whereas bio
logical data is often sampled on an irregular surface. T
upper surface of the ‘‘average’’ human head@16# may be
represented as a hemiellipsoid with axesa510.52 cm, b
57.66 cm, andc58.41 cm, or alternatively 25,29, and
0 % elongation from a perfect sphere. Although prolate sp
roidal harmonics have been applied to biophysical field pr
lems @17–19#, the technique is often unwieldy. In compar
son to error fromeAB , especially for lowl, we assume the
05191
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error due to approximating the ellipsoidal surface with
spherical surface is negligible.

III. APPLICATION TO SIMULATED DATA

We generated evenly tessellated, hemispherical elect
maps of 74, 187, 282, and 559 electrodes, in addition
common experimental maps of 20, 64, and 131@8# elec-
trodes. Five hundred potential maps were simulated for e
electrode configuration. Each potential map was rando
generated with harmonics of up to degreel 56, such that the
F lm varied with uniform distribution between 0 and 1
Power-spectrum estimatesĜ( l ) were then calculated fo
each map, using both methods. Figure 1 shows Pears
correlation coefficientsr l , calculated betweenG( l ) and
Ĝ( l ) over the 500 trials for each electrode map.

We have noted that the error due toeAB causes power
from one (l ,m) component to be misinterpreted as power
another, often of differentl. Therefore, we might expect ei
ther method’s performance to depend on thel spectrum be-
ing analyzed. Using preliminary experimental data, we c
structed an approximate power spectrumGnorm( l ) for
average-referenced scalp EEG, peaked atl 51 andl 52, and
decaying withl 21 thereafter. Another five hundred potenti
maps were generated, withF lm uniformly distributed be-
tween

0,F lm,
Gnorm~ l !

2l 11
~13!

to simulate a physiologically realistic distribution ofl spec-
tra. Power spectrum estimatesĜ( l ) were calculated for each
map using both methods. Results are shown in Fig. 2.

In general, results for the spline method—though oft
quite accurate—were dependent on the distribution ofl spec-
tra being measured, exact electrode positions, and elect
numbers. Results for the adjoint harmonic method appea
more robust, even for sparse (n564) sampling, although ac
curacy was somewhat less in the higher harmonics.

In both methods, forl 56, we observed minimal improve
ment for more than 131 electrodes. We thus believe that
6-3
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FIG. 2. Correlations between actual and es
mated l power for more realistically distributed
random spectra based on genuine EEG data.
in Fig. 1, but in original spectra, random power
each l component is uniformly distributed be
tween 0 and (2l 11)21.
e

th
G

d
om
u-

fo

on
ion
ex-
ies:
.

the
.
e in
131-channel sampling is an appropriate tool for furth
study. Furthermore, given the limit in Eq.~11! and the
known volume-conductor attenuation of higher modes@14#,
we suggest that the study of spatial frequencies higher
approximatelyl 58 will be better served by intracranial EE
than by denser electrode maps.

In general, for lowl, the adjoint harmonic method seeme
more consistent. We examined typical 131-channel dec
positions~Fig. 3! to investigate further. Both methods acc
rately reproduced the potential maps (r .0.9 for 131 chan-
nels!. The spline method, however, was slightly unstable

low l, and the erroneous negativeF̂ lm are reflected in the
power spectrum.
05191
r

an

-

r

IV. REFINEMENTS AND ANALYSIS OF ERROR

Any application of the spherical harmonic decompositi
should take into account the estimated relative contribut
of various error sources. Aside from measurement and
perimental error, these may be divided into three categor
sampling error, orientation error, and hemispherical error

A. Sampling error

Figures 1 and 2 indicate minimal improvement forl<6
with more than 131 electrodes. We can thus deduce that
Nyquist-like limit in Eq. ~11! is an appropriate guideline
When using coarser sampling, we expect some decreas
l

nce
FIG. 3. Scalp topography~left column!, l ,m spectra~center column!, and l power ~right column! for a typical 131-channel spherica
harmonic decomposition. The original map, shown in~a!, represents a randomly generatedl spectrum, randomly distributed through them
indices. The adjoint harmonic method~b! reconstructs topography and gives an approximation ofl spectrum. Although the spline method~c!
also reconstructs potential topography, we observe irregularities in the lowerl amplitude estimates that contribute to decreased performa
for these wave numbers, and a less accuratel-spectrum estimate. Amplitude values~center column! are expressed inmV. l power is
expressed in (mV) 2, and is generated froml ,m spectra using Eq.~12!.
6-4
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SPHERICAL HARMONIC DECOMPOSITION APPLIED TO . . . PHYSICAL REVIEW E64 051916
performance for higherl. Decreased accuracy for 20, 64, a
74 channels~seen in Figs. 1 and 2, particularly for 20 cha
nels! may be attributed to sampling error.

B. Orientation error

For a givenl spectrum, results will vary if power is ran
domly distributed across them’s; that is, variousm compo-
nents interact differently with our hemispherical sample gr
Five hundred randoml spectra, with realistic distribution o
G( l ), were generated. Thirty 131-channel maps, rando
varying inm power, were generated for each originall spec-
trum. Figure 4 displays the resulting accuracy, again sho
as correlation coefficientr l betweenG( l ) andĜ( l ) over the
100 trials.

Very little is gained in this simulation by decompositio
of multiple epochs. As described in the following sectio
error due tom distribution of power is largely swamped b
hemispherical error. In practice, however, we must emp
size ~in the presence of random measurement noise! the im-
portance of averaging decompositions across many epo
Orientation error will also become significant if our sampli
grid is severely nonuniform.

C. Hemispherical error

In Sec. II above, we have discussed the hemispher
error eAB . Although it is impossible to improve our decom
position results by inverting the matrixe, we may generate a
corresponding matrix for the power-spectrum result and
it to estimate the contribution of hemispherical error.

Power in a single harmonicYlm(u,f) is blurred by the
hemispherical decomposition into surrounding harmon
Using the 131-channel sampling map, we generated five h
dred potential maps for each ofl 50, . . . 6, each with one
unit power distributed randomly among the availablem’s.
By averaging over the five hundred resulting power spec

FIG. 4. Correlations between actual and estimatedl power for
multiple-epoch, adjoint-harmonic estimates of the samel spectrum,
with epochs varying only inm component. For a reasonably isotr
pic and dense sample array, such as the 131-channel EEG grid
here, there is little orientation error, and thus, little improvemen
results.
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for eachl, we obtained an empirical ‘‘averaged blurring m
trix’’ E for power spectra obtained from hemispherical d
composition. That is,

Ĝ~ l !'EG~ l !. ~14!

The typicalE for both methods is a blurred identity matrix
that is, error in power spectra is largely between adjacenl.
Most E are invertable, and thus it may seem appropriate
deblur our spectra and calculate a more accurate result. H
ever, we found that for realistic spectra, the benefit was m
ginal at best; as predicted in Sec. II, the error expressed bE
was unavoidable.

Instead,E may be used to better understand the implic
tions of hemispherical error. We calculated correlation co
ficients as in Fig. 4, betweenEG( l ) and Ĝ( l ) over the 500
trials of 30 epochs for 131 electrodes. The resulting hig
correlations~although not applicable to a decomposition
real data! are plotted in Fig. 5. By comparison with Figs. 2~a!
and 4, the result indicates the importance of hemispher
error. In particular, after examination of typicalE ande ma-
trices, we may interpret the decreased performance at lol
as blurring between adjacent wave numbers. Furtherm
the increased effect, seen in Fig. 5, of averaging across v
ous m distributions indicates that some abrupt changes
performance may be attributed to sensitive interactions
tweenE blurring and randomm distribution.

Practically, the near-identity character ofE is extremely
useful. Hemispherical error manifests as blurring betwe
adjacentl. Thus, we may expect composite measures suc
the sum of power inl 50, 1 to be substantially more accu
rate than individual estimates. Figure 6 displays the accur
of l 50, 1 and l 52, . . . ,6 adjoint harmonic power esti
mates~used below in our experimental trials!, for 500 ep-
ochs, realisticl distribution, and various sampling densitie

sed

FIG. 5. Sampling a full sphere with 262 channels and the adjo
harmonic method, correlations between actual and estimatel
power are shown for multiple-epoch~varying only inm component!
estimates of the samel spectrum. By sampling over the full spher
we eliminate hemispherical errors illustrated in Fig. 4. Remain
errors are due to orientation~note improvement with multiple ep
ochs! and imperfect sampling.
6-5
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V. APPLICATION TO EXPERIMENTAL DATA

Nunez in 1974@20,21#, using Fourier analysis, observed
relationship between spatial and temporal frequency roug
consistent with simple wave dispersion relations. Cru
wave-number spectra were approximately determined f
eight bipolar channels evenly spaced along the~sagittal!
midline. The ratio of power at wave-number 0 to power
higher wave numbers was shown to decrease consiste
with temporal frequency in the range 8 to 13 Hz. Later, Sh
@22# estimated high– and low–wave-number components
comparing EEG sampled at 2 cm electrode spacing w
aliasing in EEG sampled at 5 cm spacing. Shaw’s alias
index, indicating the relative contribution of high–wav
number power, was least in the alpha band and increa
consistently from 10 to 30 Hz in all four subjects.

We attempted to reproduce these results in order to
the adjoint harmonic method under experimental conditio
We analyzed 131-channel EEG~resting, eyes closed! in five
human subjects. Temporal Fourier coefficients were de
mined for 300 to 600 one-second epochs~depending on
available data!, and l spectra averaged over these epochs

Results are summarized in Fig. 7 as the ratio of powe
low ( l 50, 1) to power in high- (l 52, 3, 4, 5, 6) spatial
frequencies. Above approximatelyf 58 Hz, with increasing
f, we observed a general trend towards power in higherl. We
also observed high–wave-number power in the delta b
( f <3 Hz). The alpha band~c. 8–13 Hz! was characterized
by the highest power in low spatial frequencies.

In order to rule out methodological artifact, we genera
and analyzed 300 seconds of simulated EEG using 3602
correlated sources, each generating 1/f noise through a
volume conductor model as described in@14#. As expected,
the EEG-like noise~labeled RND in the figure! showed no
relation between spatial and temporal frequencies.

FIG. 6. Correlation coefficients, using the adjoint harmon
method, obtained by comparisons of estimated to actual sum
power measures. The solid line represents power inl 50 andl 51
modes, and the broken line represents power summed over m
l 52 throughl 56. Increased accuracy~as compared to part A o
Fig. 2! is because most hemispherical error manifests as blur
between power in adjacentl ’s.
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VI. CONFIDENCE INTERVAL ESTIMATION

Estimates of the temporal power spectrum are known
vary in chi-square distribution, assuming normally distri
uted estimates of the underlying Fourier coefficients@13#.
The error distribution for spatial spectrum estimates, on
other hand, is complicated by the dependence of hemisph
cal and orientation error on the entirel spectrum. For com-
posite measures of both spatial and temporal spectra, suc
shown in Fig. 7, the situation becomes even more proble
atic. We propose an empirical test for estimation of su
confidence levels. The method is analogous to the rand
ization tests commonly applied in nonparametric statisti
analysis; further detail regarding such tests may be foun
@23#.

Let

A5
G01

G2, . . . ,6
, ~15!

whereG01 is the total power in harmonicsl 50 and l 51,
and G2, . . . ,6 is the total power in harmonicsl 52 throughl

56. Let Ĝ01, Ĝ2, . . . ,6, and Â represent estimates of th
same. In Sec. V, we calculatedÂf in EEG data for various
temporal frequencies. Here, we calculate an approxim
95% confidence interval for single-epoch estimates of
actual Af . The confidence interval will apply only to th
spatial spectrum composite measure, neglecting error~or

ed

es

g

FIG. 7. Five to ten minutes of resting, eyes-closed EEG w
collected with 131 channels from each of six subjects~one dupli-
cated!. Complex temporal Fourier coefficients were calculated
one-second epochs and subjected to spherical harmonic spatia
composition using the adjoint harmonic method. Resulting wa
number spectra were averaged for each 1 Hz band over the 30
600 epochs. The ratio of power inl 50,1 to l 52, 3, 4, 5, 6 is
plotted as a simple indicator of a bias toward higher-spatial frequ
cies at higher-temporal frequencies~greater than about 10 Hz!. This
result is qualitatively consistent with the postulated existence o
approximate EEG dispersion relation, perhaps with alpha rhy
~8–13 Hz! representing the fundamental and lower overtones
surrogate signal~dotted line!, composed of random EEG-like nois
and subjected to the same analysis, showed no such relation.
6-6
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SPHERICAL HARMONIC DECOMPOSITION APPLIED TO . . . PHYSICAL REVIEW E64 051916
nonstationarity! in temporal frequency spectra, which fo
many applications may be as important. Note, though,
for 300 epochs the normalized standard error of a temp
power spectrum estimate is less than 6%.

To determine an empirical confidence interval, one wo
typically examine the distribution of random resamples.
the current application, we created many randoml spectra
from an estimated distribution ofl power, simulated many
decompositions, and examined the resulting distribution
follows.

Since hemispherical error is dependent onl spectrum, the
result will be influenced by the distribution of the rando
spectra. An approximate distribution ofl power must be as
sumed in order to calculate the confidence interval. Sr
vasanet al. @14# analytically estimated the spatial frequen
domain transfer function for volume-conduction blurring
scalp potential as proportional to (2l 11)21. This ‘‘spatial
smearing’’ is due mainly to the poorly conducting skull a
physical separation between cortical current sources
scalp electrodes. Unless a more specific distribution is ju
fied by theoretical or physiological considerations, a unifo
or chi-square distribution, scaled by (2l 11)21, and with this
power randomly distributed through them indices, is an ap-
propriate and conservative assumption. In practice, we h
found that the confidence interval estimate is not sensitiv
small changes in the assumed distribution.

In this calculation, therefore, we assumed that powe
each bin of the underlyingl spectra varies in uniform distri
bution in proportion to (2l 11)21, and that with average
referenced data the contribution ofl 50 is negligible. A large
number ~20 000! of l ,m spectra were generated, random
selecting for eachl bin a value from the appropriate distr
bution. The decomposition was performed, and the comp
ite measureA calculated, for each randomized spectrum.

By examining the distribution of known surrogateArand ,
which produce a certain estimateÂrand , we can estimate an
empirical confidence interval for our spectral estimate.
Fig. 8, we show the scatter plot ofArand againstÂrand with
95% confidence intervals. For a given estimateÂ and the
assumptions discussed above, 95% of the time, the actuA
will fall between the two lines shown.

A similar procedure may be used to calculate confide
intervals for other estimates, whether the actualGl or other
composite measures. In summary, a large number ofl ,m
spectra must be generated from a conservatively broad
sumed power distribution. The corresponding scalp maps
decomposed; the estimate of interest is calculated for e
and plotted against those calculated from the original spec
Confidence intervals, then, are the vertical limits betwe
which the actual value may fall—with a given probability—
for a certain estimate. These limits may be determined
regression techniques or by examining the distribution wit
vertical ‘‘slices’’ of the scatter plot.

Careful judgment must be applied when estimating co
dence intervals for multiple-epoch measures such as
shown in Fig. 6. As demonstrated earlier in this paper, va
tion in them component of anl ,m spectrum only allows us
to ‘‘average out’’ the minimal orientation error. Variation i
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hemispherical error~dependent onl spectrum!, without gross
violation of the stationarity assumption, is necessary for
average of estimatesÂ over multiple epochs to converge t
A.

VII. DISCUSSION

Our simulations provide a firm basis for application
spherical harmonic decomposition to irregularly sampl
hemispherical data such as EEG. Our hemispherical mo
cation of Misner’s adjoint harmonic method@10# proved
most consistent. However, for physiological data of kno
power distribution, the spline method@9# is complementary
and may be slightly more accurate with high-density sa
pling. It seems that, within the conservative bandlimit
equation@3# and the known spatial filter properties of th
head@14#, decomposition accuracy will not be materially im
proved by more than 131 electrodes for scalp EEG. We s
gest that confidence intervals for such decompositions, or
decomposition-derived measures, be determined empiric
using randomized data. Furthermore, while sing
decomposition errors are relatively large, with multiple e
ochs the experimental accuracy may be increased sub
tially. For this averaging to be both valid and effective, w
must assume a quasistationary wave-number spectrum a
our epochs, but with sufficient random variation in hem
spherical error for our estimates to converge upon the me
In addition, especially in EEG applications, we must rem
aware of the limitations inherent in collapse acrossm’s ~we
assume the orientation of the underlying cerebral he
spheres is irrelevant! and the use of spherical harmonics on
hemispheroidal surface.

The dynamical properties of human EEG rhythms a

FIG. 8. 95% confidence intervals for single-epoch estimates
the power ratioA5Gl 50,1/Gl 52 . . . 6. Twenty thousand potentia
maps were generated from known, random, realistically distribu
~based on genuine EEG data! l spectra, and decomposed using 1
channels and the adjoint harmonic method. Here, knownA are plot-
ted against the resulting estimatedA. Solid lines indicate the em-
pirical 95% confidence interval for a given estimate ofA. Multiple-
epoch estimates will result in much smaller intervals, depending
the variation inl spectra being decomposed.
6-7
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quite complicated, varying substantially between individu
and brain states. Furthermore, physiologically based theo
ical models point to substantial nonlinear effects and in
actions across spatial scales@2,24–27#. Despite all the obvi-
ous complications, results from the spherical harmo
decomposition of experimental EEG agreed qualitativ
with crude linear electrode array results@1,22#. These results
were seen in all subjects and are consistent with a mi
global/local model of cortical dynamics, in which lowe
global-mode oscillations produce alpha rhythm, super
posed on local or spatially uncorrelated activity in vario
frequency bands@2#. Further study of spatiotemporal EE
dynamics, using spherical harmonic decomposition, sho
shed more light on these issues.
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APPENDIX: ADJOINT HARMONIC METHOD

The fundamental development of Misner’s adjoint h
monic method may be found in@10#. Here, we summarize its
adaptation to hemispherically sampled data, in notation c
sistent with the previous sections. We use the real sphe
harmonics

Ylm~u,f!5A~2l 11!

4p

~ l 2umu!
~ l 1umu!

Pl
umu~cosu!Fm~f!,

~A1!

where

Fm~f!5H 1 m50,

A2cosmf m.0,

A2sin2mf m,0.

~A2!
of

s

n

y

l.

To
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The orthogonality relationship of the spherical harmonicsYA
may be discretized over a set of real (G) and antipodal (G8)
electrode positions:

^YAuYB&5 (
xP(GøG8)

YAYBwx . ~A3!

The electrode weightswx represent the fraction of scalp are
assigned to each electrode, and in our implementation
derived from the mean distancekx between an electrodex
and its three nearest neighbors

wx54pR2
kx

2

(
xPG

kx
2

. ~A4!

Note that, if we use solely the hemispherical sample
sitionsG in Eq. ~A3!, the matrix ofGAB obtained later is ill
conditioned (R.108) and thus, theGAB cannot be reliably
found. In other words, as one might expect, the hemisph
cal error is not an artifact of discretization, and thus, is n
minimizable by the regularization process described he
Rather, the electrode positions are reflected over the horiz
tal plane to create a set of antipodal positionsG8, and the
discretization of Eqs.~A3! and ~4! is calculated over the
full-sphere set (GøG8).

The matrix of GAB , whose deviation from an identity
matrix represents the error introduced by discretization
thus calculated using Eq.~4!. The adjoint harmonicsYlm are
obtained from Eq.~6!, and used in Eq.~5! to calculate de-
convolution coefficientsm lm . The rows ofm representing
antipodal electrode positions are discarded; the remain
m lm may be used in Eq.~3! to estimateF lm . The angular
power-spectrum estimateĜ( l ) may be calculated from Eq
~12!.
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