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Spherical harmonic decomposition applied to spatial-temporal analysis
of human high-density electroencephalogram
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We demonstrate an application of spherical harmonic decomposition to the analysis of the human electro-
encephalogran(EEG). We implement two methods and discuss issues specific to the analysis of hemispheri-
cal, irregularly sampled data. Spatial sampling requirements and performance of the methods are quantified
using simulated data. The analysis is applied to experimental EEG data, confirming earlier reports of an
approximate frequency—wave-number relationship in some bands.
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[. INTRODUCTION In theory, a potential fieldb(Q)) may be decomposed into
The human electroencephalogrdBEEG), as measured at spherical harmonic amplitudeB,,, defined by
the scalp, represents a superposition of electric fields result-
ing from post-synaptic potentials in neocortex, the tf#rto
5 mm) surface layer of human brains. Several models of d).mzf Y m(0,)D(6,p)d%Q. (2)
neocortical dynamics treat EEG as a mixed global/local phe- @
nomenon[1-3], and a better understanding of its spatial-
temporal dynamics is necessary for evaluation and refineln practice, whereb(()) is sampled at discrete locatiof's
ment of these models. Its temporal behavior has been studiee would prefer to accomplish the decomposition in the
at length, both by clinical observatigs] and with such tools  form
as power spectrgs], coherencg6], the Hilbert transform
[7], and many others. However, until recently poor spatial -
resolution(due to minimal electrode sampling and under use D=2 im(X)F(X), 3
of head modelshas limited spatial analysis of EE3,2,8]. xel
As a potential field on a near-hemispherical surface, EEG .
is amenable to analysis by spherical harmonic decomposiwhere the®,., are estimates ob,,,, which may be imple-
tion. In this paper, we apply two methods of decompositionmented in a single matrix multiplication if the,,(x) are
(one described by Caduseéh al. [9] and one adapted from constant for a given sampling grid. The transition from
Misner [10]) to 131-channel EEG data. Using simulatedtheory to practice, however, may be complex. In the case of
data, we discuss issues and pitfalls relevant to such an analgEG or similar data, we encounter three major and two mi-
sis, specifically the effect of integration over a hemispherepor issues.
limited sampling density, and deviations from a spherical
surface. The adapted Misner decompositidascribed fully
in the AppendiX is applied to experimental data. From this
application, we draw preliminary conclusions regarding the First, with discretely sampled dafa(I'), Egs. (1) and
frequency—wave-number relation of neocortical activity.  (2)—both defined over a continuous medium—must be used
with care. Even with appropriate sampling densitisse

Il. CONSIDERATIONS FOR DECOMPOSITION OF EEG Sampling below), discretization of the inner product of Eq.
(1) invalidates the orthogonality relation. Note that the fun-
damental ability of orthogonal functions to represent
sampled signals is not compromised. Rather, the decomposi-

A. Discretization and regularization

We use the real spherical harmonjdd], defined on the
sphere() and described by the orthogonality integral

2m (m , tion becomes more difficult as a given signal may be ap-
Yiml Yirm) = J; fo Yim(6,)Y1 (6, $)sin6d6d proximately reconstructed with more than dnen spectrum.
Blind application of a discretized EQR2) may yield an accu-

=01 Omm’ - (1)  rate reconstruction at the sample points, but with large arti-

facts in the higher spatial frequencies. The apparently accu-
rate reconstruction will often be due to an unrealistic
*Also at Department of Biomedical Engineering, Tulane superposition of high-amplitude, high-frequency modes.
University, New Orleans, LA 70118; email address: We mustinvoke constraint or regularization techniques to
wingeier@bsi.swin.edu.au address this issue. Recently, Mis&0] introduced a regu-
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larization method for decomposition on a rectangular threehemisphere from a sum &,y and several higher harmonics.
dimensional grid; that is, generalized to usg(r,0,). In other words, the spherical harmoni¥g,, are no longer
We describe here the special case of sampling on a sphericatthonormal for G< < =/2; this may be expressed by re-
surface, more relevant to EEG analysis, in whicts con-  placing thes in Eq. (1) with an error quantitye

stant. In Misner's method, a matri@,g represents the dis-

. . 27 (w2
cretized inner product (YalYg)= JO Jo Ya(6,0)Yg(6,¢)sinfdodd=epg.

GAB:<YA|YB>:X2€:F Ya(X)Yg(X)Wy, (4) ©

) o In general, our hemispherical estimafb,s will be related to
whereA andB refer to index groupsl(n). (For application o hypothetical full-sphere result by the matrixefs's
to EEG, we use the real harmonics and replace Misner's

weight functionw, with the effective area of each electrode.
Misner demonstrates that the mean square error due to dis-
cretization is minimized(the regularization constrainby
choosing

D' =ed. (10

It is impossible to calculate a more accurate result, by inver-
sion of g, for two reasons. First, the matrix is ill condi-
i) =Y'™(8, p)w,, (5)  tioned R> 10°, where the two-norm condition numbBris
the ratio of the largest singular value ©fo the smallestand
for xeI', where the “adjoint spherical harmonicsy® are  thus, the inversion is problematic. More fundamentally, since
defined as the spherical harmonics are not truly orthogonal over the
hemisphere, the matri expresses an unavoidable ambigu-
B 1 ity between certairY, .
Y _; Ya(Gas) 6) Given this ambiguity, we must consider whether the
spherical harmonics are the most appropriate set of basis
The coefficientsu,,, remain constant for a given sampling functions for decomposition over the hemisphere. In the field
grid, and may be used in E(B) to estimated,, . of computer graphics, a hemispherical mapping of the
In a separate analysis, Cadusathal. [9] approached the Zernike polynomials(orthonormal over the unit digkwas
problem as a side issue of spherical spline interpolation oproposed by Koenderinét al.[12] to represent the variance
the EEG. Adapted to the notation used here, the second-ordef reflectance over the hemisphere. However, the Zernike-
spline fitd' over the spheré) is given by based method provides no such convenient measure of spa-
| tial spectrum, independent of coordinate orientation, as is
- I iven by the collapseds angular power spectrum estimate
®'(Q)=d+|21 2—| Tia0® EF CYim(X) | Yim(£2), gescribgd in Sec. ?I D. e i
stm==t L )7 xe @) Furthermore, we note that the underlying biological sys-
tem (the human cortexis not limited to the single hemi-
where thec, and d are coefficients calculated from the SPhere accessible to scalp electrodes. For this reasow.the
sampled potentials. Equatid) is equivalent to a spherical May provide a better connection to brain anatomy and
harmonic expansion ob’, in terms of coefficientsb,,, in-  9lobal-dynamic theory. For instance, the global alpha rhythm
dicated by the bracketed term. Regularization is accomPostulated inf1] and[2] would be a fundamental-mode os-
plished in this case by the spline fit, which is constrained tcfillation over the entire cortex, analogous to thig, har-
produce the smoothest approximation consistent with th&onic. Thus, the spherical harmonics seem appropriate for
sampled data. The spherical harmonic expansion coefficienfSEG analysis, when used with an understanding of the hemi-

@/, then, are given by spherical error.
d, 1=0; C. Sampling
o = 1 (8) Of course, when attempting to decompose experimental
——— > & Yim(X), I=1. data, we must sampl® (1) at specific location$'. Assum-

[I(1+1)]? xeT ) ;
ing near-regularly spaced electrodes, our maximum resolv-

able | is determined by a spherical analog of the familiar
and d, a constant matrix ofu;,, may be derived for each tme-domain Nyquist limit[13] f;,=1/(2AT), where the

sampling grid, and used in E€B) as discussed previously. Maximum resolvable frequenclf,, is determined by the
Further detail on the spline fit may be found in the . sampling intervalAT. For spatial sampling on a spherical
surface, we replacAT with the analogous quantity, rep-

resenting mean angular distance between adjacent electrodes.
Since thd index indicates cycles per circumferenes well
Particularly relevant to EEG analysis is the ambiguity in-as the number of nodal lines across the sphave multiply
troduced by sampling over only half of the sphere. For in-by 27 to give a limit ofl,,,,,=7/v. In practice, sampling will
stance, the functiorYq is indistinguishable over the upper degrade for frequency components under but near the Ny-

Using Caduschet al's derivation of spline coefficients,

B. Hemispherical sampling
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FIG. 1. Correlations between actual and estimatpdwer for uniformly distributed random spectra. Five hundred potential maps were
generated from known wave-number spectra, with random power inleawhponent, uniformly distributed between 0 and 1. For each of
seven electrode densities, wave number spectra were estimated by spherical harmonic decomposition of the 500 sampled maps. Correlation:s
between actual power and estimated power were calculated over the 500 trials férceaghonent. Shown here féa) adjoint harmonic
and (b) spline methods, these correlations are a measure of the quality of a single decomposed power spectrum.

quist limit, so a practical limit off,=1/(3AT) or f,., €rror due to approximating the ellipsoidal surface with a
=1/(4AT) is generally chosen. Likewise, here we adopt aspherical surface is negligible.
conservative limit of

ll. APPLICATION TO SIMULATED DATA

l max

T
2—} 11 We generated evenly tessellated, hemispherical electrode
Y maps of 74, 187, 282, and 559 electrodes, in addition to
or I,,.,=6 usingy=0.24 for our 131-channel electrode cap. S0MMon experimental maps of 20, 64, and 18] elec-
Note that the usual step of analog prefilteritg avoid alias- trodes. Five hqndreq potential maps were simulated for each
ing of higher frequenciésis not required here due to the electrode co_nflguranon_. Each potential map was randomly
low-pass characteristics of the head volume condydef, ~ 9enerated with harmonics of up to degtees, such that the
®,,, varied with uniform distribution between 0 and 1.
D. Coordinate orientation Power-spectru_m estimatefé(l) were then calculated for
~ each map, using both methods. Figure 1 shows Pearson’s
In many problems, the sphere has no preferred directioreorrelation coefficientsr;, calculated betweerG(l) and
The mindices are usually collapsgd5] to produce an an- &(1) over the 500 trials for each electrode map.

gular power spectrum estima@(l) as a function of wave We have noted that the error due égz causes power

number only from one (,m) component to be misinterpreted as power in
| another, often of different Therefore, we might expect ei-
&)= 2 (qsfm)z’ (12) _ther method’s pe.rforman.ce. to depend.on thepectrum be-
m=—1 ing analyzed. Using preliminary experimental data, we con-
structed an approximate power spectruBy,,,(I) for
which is independent of coordinate system orientation. Asaverage-referenced scalp EEG, peaked=at andl =2, and
well, in the simulations of Sec. Ill, we found the “hemi- decaying withl ! thereafter. Another five hundred potential
spherical error” inl spectrum to be independent of orienta- maps were generated, witl,,, uniformly distributed be-
tion. In some EEG studies, of course, the orientation of theween
underlying cerebral hemispheres may be relevant. In such
cases, local spatial Fourier analy$is| should adequately Grorm(D
complement our decomposition without the complication of 0<®in<— 77~ (13
distinguishingm modes.

to simulate a physiologically realistic distribution bspec-

tra. Power spectrum estimatég|) were calculated for each
We assume that our mediu€d is a sphere, whereas bio- map using both methods. Results are shown in Fig. 2.
logical data is often sampled on an irregular surface. The In general, results for the spline method—though often
upper surface of the “average” human heftb] may be quite accurate—were dependent on the distributionsplec-
represented as a hemiellipsoid with ax@s 10.52 cm, b  tra being measured, exact electrode positions, and electrode
=7.66 cm, andc=8.41 cm, or alternatively 25;-9, and numbers. Results for the adjoint harmonic method appeared
0% elongation from a perfect sphere. Although prolate sphemore robust, even for sparse=64) sampling, although ac-
roidal harmonics have been applied to biophysical field probeuracy was somewhat less in the higher harmonics.
lems[17-19, the technique is often unwieldy. In compari-  In both methods, fok=6, we observed minimal improve-
son to error frome,g, especially for lowl, we assume the ment for more than 131 electrodes. We thus believe that our

E. Nonspherical media
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131-channel sampling is an appropriate tool for further IV. REFINEMENTS AND ANALYSIS OF ERROR

itUdy' Fulrthermored gtlventtthe “{.mt |r:( Eqﬁl) and the Any application of the spherical harmonic decomposition

nown volume-condtctor attenuation ot higner moﬁ]aé;], should take into account the estimated relative contribution
we suggest that the_study of spatial frequ_enues h_lgher tha@f various error sources. Aside from measurement and ex-
approximatelyl =8 will be better served by intracranial EEG erimental error, these may be divided into three categories:

than by denser electrode maps. _ sampling error, orientation error, and hemispherical error.
In general, for lowl, the adjoint harmonic method seemed

more consistent. We examined typical 131-channel decom-
positions(Fig. 3 to investigate further. Both methods accu- A. Sampling error
rately reproduced the potential maps>0.9 for 131 chan-

. . Figures 1 and 2 indicate minimal improvement f
nels. The spline method, however, was slightly unstable forW gures 1 and dicate al improvement fox.6

~ ith more than 131 electrodes. We can thus deduce that the
low |, and the erroneous negatide,,, are reflected in the Nyquist-like limit in Eq. (11) is an appropriate guideline.
power spectrum. When using coarser sampling, we expect some decrease in

Amplitude
Power

YOY1Y2 Y3 Y4 Y5 Y6 0123456
Spherical Harmonic lindex

Amplitude
Power

YOY1Y2 Y3 Y4 Y5 Y6 0123456
Spherical Harmonic /index

Amplitude

Ya Y5 Y6 0123456
Spherical Harmonic /index

YOY1Y2 Y3

FIG. 3. Scalp topographgleft column, |,m spectra(center columj andl power (right column for a typical 131-channel spherical
harmonic decomposition. The original map, showrian represents a randomly generatespectrum, randomly distributed through time
indices. The adjoint harmonic methég) reconstructs topography and gives an approximatidrspectrum. Although the spline meth(al
also reconstructs potential topography, we observe irregularities in the l@amgplitude estimates that contribute to decreased performance
for these wave numbers, and a less accukaeectrum estimate. Amplitude valuésenter columjn are expressed inV. | power is
expressed ingV)?, and is generated fromm spectra using Eq12).
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FIG. 4. Correlations between actual and estimdtpdwer for FIG. 5. Sampling a full sphere with 262 channels and the adjoint

multiple-epoch, adjoint-harmonic estimates of the s&usgectrum,  harmonic method, correlations between actual and estimhted

with epochs varying only itm component. For a reasonably isotro- power are shown for multiple-epogtarying only inm component

pic and dense sample array, such as the 131-channel EEG grid usestimates of the samespectrum. By sampling over the full sphere,

here, there is little orientation error, and thus, little improvement inwe eliminate hemispherical errors illustrated in Fig. 4. Remaining

results. errors are due to orientatiaimote improvement with multiple ep-
ochg and imperfect sampling.

performance for highdr Decreased accuracy for 20, 64, and ) o )
74 channelgseen in Figs. 1 and 2, particularly for 20 chan- for eachl, we obtained an empirical “averaged blurring ma-
nels may be attributed to sampling error. trix” E for power spectra obtained from hemispherical de-
composition. That is,
B. Orientation error G(I)%EG(I). (14)
For a givenl spectrum, results will vary if power is ran-
domly distributed across tha's; that is, variousn compo-
nents interact differently with our hemispherical sample grid
Five hundred randorh spectra, with realistic distribution of
G(l), were generated. Thirty 131-channel maps, randoml
varying inm power, were generated for each origihapec-
trum. Figure 4 displays the resulting accuracy, again show

as correlation coefficient; betweenG(1) andG(l) over the was unavoidable.

100 trials. Instead,E may be used to better understand the implica-

. Ve?t’_ Iilttle is gﬁineg indthis _Ei”(‘julati?h” bfy I:jec.omposipon tions of hemispherical error. We calculated correlation coef-
Of mutipie epochs. As described in the Tollowing sec Ior]’ficients as in Fig. 4, betweeBG(l) andG(l) over the 500

error due tom distribution of power is largely swamped by | . .
hemispherical error. In practice, however, we must ernphat_nals of 30 epochs for 131 electrodes. The resulting higher

size (in the presence of random measurement ndise im- correlations(although not applicable to a decomposition of

portance of averaging decompositions across many epochrseal dataare plotted in Fig. 5. By comparison with Figgap

Orientation error will also become significant if our sampling and 4'| the rt_esullt mdfltcates th? |Tport?r:ce_d%fl he(;msphencal
grid is severely nonuniform. error. In particular, after examination of typidaland e ma-

trices, we may interpret the decreased performance at low

as blurring between adjacent wave numbers. Furthermore,

the increased effect, seen in Fig. 5, of averaging across vari-
In Sec. Il above, we have discussed the hemisphericalus m distributions indicates that some abrupt changes in

error epg . Although it is impossible to improve our decom- performance may be attributed to sensitive interactions be-

position results by inverting the matrig we may generate a tweenE blurring and randonm distribution.

corresponding matrix for the power-spectrum result and use Practically, the near-identity character Bfis extremely

it to estimate the contribution of hemispherical error. useful. Hemispherical error manifests as blurring between
Power in a single harmoni¥,,(0,¢) is blurred by the adjacent. Thus, we may expect composite measures such as

hemispherical decomposition into surrounding harmonicsthe sum of power in=0, 1 to be substantially more accu-

Using the 131-channel sampling map, we generated five humate than individual estimates. Figure 6 displays the accuracy

dred potential maps for each b£0, ...6,each with one of |=0, 1 andl=2,...,6 adjoint harmonic power esti-

unit power distributed randomly among the availabiés. mates(used below in our experimental trialfor 500 ep-

By averaging over the five hundred resulting power spectragchs, realistid distribution, and various sampling densities.

The typical E for both methods is a blurred identity matrix;
‘that is, error in power spectra is largely between adjatent
Most E are invertable, and thus it may seem appropriate to
Yeblur our spectra and calculate a more accurate result. How-
gver, we found that for realistic spectra, the benefit was mar-
ginal at best; as predicted in Sec. Il, the error expressés by

C. Hemispherical error
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FIG. 6. Correlation coefficients, using the adjoint harmonic . . .
method, obtained by comparisons of estimated to actual summed FG- 7. Five to ten minutes of resting, eyes-closed EEG were
power measures. The solid line represents powérif andi=1  collected with 131 channels from each of six subjectse dupli-
modes, and the broken line represents power summed over mod&&ted- Complex temporal Fourier coefficients were calculated for
I=2 throughl =6. Increased accuradias compared to part A of one-second epochs and subjected to spherical harmonic spatial de-

Fig. 2 is because most hemispherical error manifests as blurring©@MPOsition using the adjoint harmonic method. Resulting wave
between power in adjacehs. number spectra were averaged for each 1 Hz band over the 300 to

600 epochs. The ratio of power Ir=0,1 tol=2, 3, 4, 5, 6 is
plotted as a simple indicator of a bias toward higher-spatial frequen-
V. APPLICATION TO EXPERIMENTAL DATA cies at higher-temporal frequenciggeater than about 10 HzThis

. . . . result is qualitatively consistent with the postulated existence of an
Nunez in 197420,21, using Fourier analysis, observed a approximate EEG dispersion relation, perhaps with alpha rhythm

relatipnship b_etwe_en spatial and .tempolral frequgncy rOUghI¥8—13 H2 representing the fundamental and lower overtones. A
consistent with simple wave dispersion relations. Crudey rogate signaidotted ling, composed of random EEG-like noise
wave-number spectra were approximately determined fromng subjected to the same analysis, showed no such relation.
eight bipolar channels evenly spaced along thagitta)
midline. The ratio of power at wave-number O to power at VI. CONFIDENCE INTERVAL ESTIMATION
higher wave numbers was shown to decrease consistently )

Estimates of the temporal power spectrum are known to

with temporal frequency in the range 8 to 13 Hz. Later, Shaw ) . oEEe . o
[22] estimated high— and low—wave-number components biary in chi-square distribution, assuming normally distrib-

comparing EEG sampled at 2 cm electrode spacing wit ted estimates of the underlying Fourier coefficiefi8].

e ) .. ... The error distribution for spatial spectrum estimates, on the
?"as'“g n EE.G sampled qt 5 cm spacing. Shaws aIIaSIn%ther hand, is complicated by the dependence of hemispheri-
index, indicating the relative contribution of high—wave-

b least in the alpha band and i cal and orientation error on the entirespectrum. For com-
numboer power, was least in the ajpha band an mcrease@site measures of both spatial and temporal spectra, such as
consistently from 10 to 30 Hz in all four subjects.

, shown in Fig. 7, the situation becomes even more problem-
We attempted to reproduce these results in order to teghic e propose an empirical test for estimation of such

the adjoint harmonic method under experimental conditionsegnfidence levels. The method is analogous to the random-
We analyzed 131-channel EE@sting, eyes closedn five  jzation tests commonly applied in nonparametric statistical

human subjects. Temporal Fourier coefficients were deteranalysis; further detail regarding such tests may be found in
mined for 300 to 600 one-second epodfuepending on [23].

available datp andl spectra averaged over these epochs. Let
Results are summarized in Fig. 7 as the ratio of power in
low (I=0, 1) to power in high-=2, 3, 4, 5, 6) spatial Gos
frequencies. Above approximately=8 Hz, with increasing A= G, o (19

f, we observed a general trend towards power in hitjhéfe
also observed high—wave-number power in the delta band : . .
(f<3 Hz). The agllpha bantc. 8—-13 Elz) was characterized where Go 1S the total power n harmon|_cls=0 andl=1,
by the highest power in low spatial frequencies. 615 ﬂfe total power in harmonlds=? throughl

In order to rule out methodological artifact, we generated=6- L€t Go1, Gz,... 6 andA represent estimates of the
and analyzed 300 seconds of simulated EEG using 3602 uisame. In Sec. V, we calculatekl in EEG data for various
correlated sources, each generating 1/f noise through a heéeimporal frequencies. Here, we calculate an approximate
volume conductor model as described id]. As expected, 95% confidence interval for single-epoch estimates of the
the EEG-like noisglabeled RND in the figuneshowed no actual A;. The confidence interval will apply only to the
relation between spatial and temporal frequencies. spatial spectrum composite measure, neglecting €iwor
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nonstationarity in temporal frequency spectra, which for 2 7
many applications may be as important. Note, though, that 1.8 /
for 300 epochs the normalized standard error of a temporal 16 /
power spectrum estimate is less than 6%. ' /
To determine an empirical confidence interval, one would & 14 /
typically examine the distribution of random resamples. In ¢ 1.2 /
the current application, we created many randospectra E 1 /
from an estimated distribution df power, simulated many ~ 0.8 // _
decompositions, and examined the resulting distribution as A
follows. 0o
Since hemispherical error is dependentl apectrum, the 0.4 / //
result will be influenced by the distribution of the random 0.2}/ //
spectra. An approximate distribution bpower must be as- 0 —d
sumed in order to calculate the confidence interval. Srini- 0 02 04 06 08 1 12 14 16 18 2
vasanet al. [14] analytically estimated the spatial frequency estimate of A

domain transfer function for volume-conduction blurring of

. . = . . FIG. 8. 95% confidence intervals for single-epoch estimates of
scalp potential as proportional to [(21) 1. This “spatial ° ge-ep

ina” is d inl h | ducti Kull dthe power ratioA=G,_,/G|-, . s Twenty thousand potential
smearing™ is due mainly to the poorly conducting skull an maps were generated from known, random, realistically distributed

physical separation between cortical current sources anghased on genuine EEG dataspectra, and decomposed using 131
scalp electrodes. Unless a more specific distribution is justizhannels and the adjoint harmonic method. Here, kn&wre plot-
fied by theoretical or physiological considerations, a uniformieq against the resulting estimatéd Solid lines indicate the em-

or chi-square distribution, scaled byl(21)~*, and with this  pirical 95% confidence interval for a given estimatefoMultiple-
power randomly distributed through timeindices, is an ap- epoch estimates will result in much smaller intervals, depending on
propriate and conservative assumption. In practice, we hav@e variation inl spectra being decomposed.

found that the confidence interval estimate is not sensitive to

small changes in the assumed distribution. _hemispherical errofdependent ohspectrum, without gross
In this calculation, therefore, we assumed that power injiglation of the stationarity assumption, is necessary for the

eagh b'.n of the underlylngspegtlra varies in “f"form distri- average of estimates over multiple epochs to converge to
bution in proportion to (2+1)" -, and that with average-

referenced data the contributionlef O is negligible. A large

number (20000 of I,m spectra were generated, randomly

selecting for each bin a value from the appropriate distri- VII. DISCUSSION

bution. The decomposition was performed, and the compos-

ite measureA calculated, for each randomized spectrum.
By examining the distribution of known surroga®, 4,

Our simulations provide a firm basis for application of
spherical harmonic decomposition to irregularly sampled,
. . LA . hemispherical data such as EEG. Our hemispherical modifi-
wh|c_h_ produce_a certain estimalg,nq, We can estimate an ..o of Misner's adjoint harmonic methdd 0] proved
ernpmcal confidence interval for our spef:traIA eshmgte_ Inmost consistent. However, for physiological data of known
Fig. 8, we show the scatter plot 8fa,q againstArang With  power distribution, the spline methd@] is complementary
95% confidence intervals. For a given estimateand the and may be slightly more accurate with high-density sam-
assumptions discussed above, 95% of the time, the a&tual pling. It seems that, within the conservative bandlimit of
will fall between the two lines shown. equation[3] and the known spatial filter properties of the
A similar procedure may be used to calculate confidencéead[14], decomposition accuracy will not be materially im-
intervals for other estimates, whether the act@alor other  proved by more than 131 electrodes for scalp EEG. We sug-
composite measures. In summary, a large numbel,raf  gest that confidence intervals for such decompositions, or for
spectra must be generated from a conservatively broad adecomposition-derived measures, be determined empirically
sumed power distribution. The corresponding scalp maps angsing randomized data. Furthermore, while single-
decomposed; the estimate of interest is calculated for eaalecomposition errors are relatively large, with multiple ep-
and plotted against those calculated from the original spectraachs the experimental accuracy may be increased substan-
Confidence intervals, then, are the vertical limits betweertially. For this averaging to be both valid and effective, we
which the actual value may fall—with a given probability— must assume a quasistationary wave-number spectrum across
for a certain estimate. These limits may be determined byur epochs, but with sufficient random variation in hemi-
regression techniques or by examining the distribution withinspherical error for our estimates to converge upon the mean.
vertical “slices” of the scatter plot. In addition, especially in EEG applications, we must remain
Careful judgment must be applied when estimating confi-aware of the limitations inherent in collapse acrass (we
dence intervals for multiple-epoch measures such as thatssume the orientation of the underlying cerebral hemi-
shown in Fig. 6. As demonstrated earlier in this paper, variaspheres is irrelevanand the use of spherical harmonics on a
tion in them component of ah,m spectrum only allows us hemispheroidal surface.
to “average out” the minimal orientation error. Variation in ~ The dynamical properties of human EEG rhythms are
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quite complicated, varying substantially between individualsThe orthogonality relationship of the spherical harmongs

and brain states. Furthermore, physiologically based theoretnay be discretized over a set of redl)(and antipodal ')

ical models point to substantial nonlinear effects and interelectrode positions:

actions across spatial scales24—27. Despite all the obvi-

ous complications, results from the spherical harmonic

decomposition of experimental EEG agreed qualitatively (YalYg)= > YaAYpWy. (A3)

with crude linear electrode array resylis22]. These results xe(T'Ur’)

were seen in all subjects and are consistent with a mixed

global/local model of cortical dynamics, in which lower The electrode weights, represent the fraction of scalp area
global-mode oscillations produce alpha rhythm, superimassigned to each electrode, and in our implementation are
posed on local or spatially uncorrelated activity in variousderived from the mean distanég between an electrode
frequency band$2]. Further study of spatiotemporal EEG and its three nearest neighbors

dynamics, using spherical harmonic decomposition, should
shed more light on these issues.

L
w,=47R . (A4)
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tional Science FoundatiofB.M.W.). Note that, if we use solely the hemispherical sample po-

sitionsI” in Eq. (A3), the matrix of G,g obtained later is ill
APPENDIX: ADJOINT HARMONIC METHOD conditioned R>108) and thus, thEGAB cannot be reliably
found. In other words, as one might expect, the hemispheri-
The fundamental development of Misner's adjoint har-cal error is not an artifact of discretization, and thus, is not
monic method may be found [10]. Here, we summarize its minimizable by the regularization process described here.
adaptation to hemispherically sampled data, in notation conrather, the electrode positions are reflected over the horizon-
sistent with the previous sections. We use the real sphericg| plane to create a set of antipodal positidis and the

harmonics discretization of Eqs(A3) and (4) is calculated over the
full-sphere set{UT").
(21+1) d=m) [m| The matrix of G whose deviation from an identit
Yim(0,6)= PI™(cost) D), . AB > . ) an identity.
47 (I+|m[) matrix represents the error introduced by discretization, is

(A1)  thus calculated using E¢4). The adjoint harmonic¥'™ are
obtained from Eq(6), and used in Eq(5) to calculate de-
convolution coefficientsu;,. The rows of u representing

1 m=0, antipodal electrode positions are discarded; the remaining
Mim May be used in Eq3) to estimated®,,,. The angular

Prl(e)= \/Ecosmgb m=>0, (A2) power-spectrum estima@(l) may be calculated from Eq.
J2sin-m¢ m<O0. (12).
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